Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Luis-Fernando Roa, Dino Gnecco, Alberto Galindo, Jorge Juárez, Joel L. Terán and Sylvain Bernès*

Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, AP 1613, 72000 Puebla, Pue., Mexico

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.058$
$w R$ factor $=0.167$
Data-to-parameter ratio $=22.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-(3R,2aS)-(-)-3-Phenyl-2,3,5,6,7,8-hexahydro-oxazolo[3,2-a]pyridine-5-thione

The crystal structure of the title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}$, is very similar to that of the corresponding oxazolopyridin-5one. However, a significant participation of a tautomeric thioenolic form is observed, as reflected by the short $\mathrm{N}-\mathrm{C}(=\mathrm{S})$ bond length of 1.328 (4) Å.

Comment

Chiral, non-racemic hexahydrooxazolo[3,2-a]pyridin-5-ones are strategic starting materials for the asymmetric synthesis of alkaloids and piperidine derivatives, via the stereoselective $\mathrm{C}-\mathrm{C}$ bond formation at the position α to the N atom (Micouin et al., 1994; Husson \& Royer, 1999; Amat et al., 2003, and references therein). The stereoselectivity of this key step is mainly driven by the geometry of the fused rings of the oxazolopyridine moiety and by the functionalization of atom C5. The synthesis and X-ray structure of trans-($3 R, 2 \mathrm{a} S$)-(-)-3-phenyl-2,3,5,6,7,8-hexahydro-oxazolo[3,2-a]pyridin-5-one have been recently reported (Amat et al., 2003; Roa et al., 2003). The carbonyl group at C5 can be easily substituted by a thiocarbonyl group (see Experimental), providing (I), for which we report here the X-ray characterization.

(I)

The core of (I) consists of trans-fused rings (Fig. 1). As expected, the synthesis does not modify the absolute configuration of the chiral centers, which are retained as $2 \mathrm{a} S$ and $3 R$. The five-membered oxazole ring (O1/C2/C3/N4/C2a) approximates an envelope conformation on O1, as described by the puckering descriptor $\varphi=173.7$ (6) ${ }^{\circ}$ (Cremer \& Pople, 1975; Spek, 2003). A similar puckering analysis describes the six-membered $\mathrm{N} 4 / \mathrm{C} 2 \mathrm{a} / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 6 / \mathrm{C} 5$ ring as an envelope on C 8 , with angles $\theta=59.9$ (5) and $\varphi=123.6$ (6) (Boeyens, 1978; Spek, 2003). For the six-membered ring, the mean deviation from the $\mathrm{N} 4 / \mathrm{C} 2 \mathrm{a} / \mathrm{C} 7 / \mathrm{C} 6 / \mathrm{C} 5$ least-squares plane is $0.018 \AA$ and atom C8 deviates from this plane by $-0.627(3) \AA$; in the case of the oxazole ring, the mean deviation from the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 4 /$ C2a plane is $0.023 \AA$ and atom O 1 deviates by $-0.527(3) \AA$. The resulting trans-fused bicyclic system is almost planar, with a dihedral angle between the rings of $14.7(3)^{\circ}$. The phenyl ring at C 3 makes a dihedral angle of 78.86 (9) ${ }^{\circ}$ with the mean plane of the bicyclic system (excluding H atoms), minimizing steric hindrance for the overall molecule.

Received 20 February 2003
Accepted 27 February 2003 Online 31 March 2003

Figure 1
The structure of (I), with displacement ellipsoids at the 20% probability level for non-H atoms. H atoms are shown as small spheres of arbitrary radii.

Figure 2
The superimposed fit for the molecules of (I) (solid lines) and the starting material (open lines). The atom-numbering scheme is given for (I). For clarity, H atoms have been omitted for both molecules.

The geometry of (I) is very similar (Table 1) to that of the starting material; a fit between both structures, excluding S1 and H atoms, gives an r.m.s. deviation of $0.083 \AA$ (Fig. 2). Hence, the substitution of the carbonyl group at C 5 by a thiocarbonyl group does not significantly affect the geometry of the oxazolopyridine core. However, a structural feature observed in (I) points out its potential utility as a synthon for alkaloid synthesis; the short bond length $\mathrm{N} 4-\mathrm{C} 5$ of 1.328 (4) Å indicates a significant participation of a tautomeric thio-enolic form in the solid state and, probably, in solution. This distance is even shorter than that observed for the starting material, 1.3513 (1) \AA (Roa et al., 2003). This behavior should facilitate the functionalization at C 5 . On the other hand, due to the large radius of the S atom, a good stereoselectivity can be expected for this synthetic step.

Experimental

0.300 g of trans-(3R,2aS)-(-)-3-phenyl-2,3,5,6,7,8-hexahydrooxazolo-[3,2-a]pyridine-5-one was dissolved in anhydrous benzene (30 ml)
and 0.335 g of Lawesson's reagent [2,4-bis(4-methoxyphenyl)-1,3-di-thia-2,4-diphosphetane 2,4-disulfide] was added to the solution. The reaction was refluxed until all starting material had been consumed, ca 1 h [TLC monitoring, SiO_{2}, hexane-AcOEt (7:3)]. Solvent was then removed under vacuum and the crude product purified by column chromatography $\left[\mathrm{SiO}_{2}\right.$, petroleum ether- AcOEt (9:1)], yielding (I) as a pale yellow solid (yield: 81%; m.p. 372 K). Single crystals were obtained by slow evaporation of an AcOEt solution at 298 K. The successful substitution of the carbonyl group by a thiocarbonyl fragment was confirmed by IR data [starting material: $\left.\nu(\mathrm{C}=\mathrm{O})=1649 \mathrm{~cm}^{-1} ;(\mathrm{I}): \nu(\mathrm{C}=\mathrm{S})=1594 \mathrm{~cm}^{-1}\right]$, as well as ${ }^{13} \mathrm{C}$ NMR data $\left[\mathrm{CDCl}_{3}\right.$, displacement for C5; starting material: $\delta=168$ p.p.m.; (I): $\delta=203$ p.p.m.].

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}$
$M_{r}=233.32$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.7811$ (7) \AA 。
$b=10.4190(9) \AA$
$c=15.3834$ (12) \AA
$V=1247.15(18) \AA^{3}$
$Z=4$
$D_{x}=1.243 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 68 \quad reflections
> $\theta=4.7-13.7^{\circ}$
> $\mu=0.24 \mathrm{~mm}^{-1}$
> $T=296(1) \mathrm{K}$
> Plate, pale yellow
> $0.65 \times 0.60 \times 0.18 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer

ω scans

Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
$T_{\text {min }}=0.858, T_{\text {max }}=0.960$
4962 measured reflections
3247 independent reflections
1958 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.019 \\
& \theta_{\max }=28.7^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-14 \rightarrow 14 \\
& l=-20 \rightarrow 20 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 0.5 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.167$
$S=1.03$
3247 reflections
146 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0716 P)^{2}\right.$
$+0.236 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\mathrm{\circ}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.023 (4)
Absolute structure: Flack (1983), 1374 Friedel pairs
Flack parameter $=-0.03(15)$

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

S1-C5	$1.652(3)$	$\mathrm{C} 3-\mathrm{N} 4$	$1.477(4)$
$\mathrm{O} 1-\mathrm{C} 2 \mathrm{a}$	$1.409(5)$	$\mathrm{C} 3-\mathrm{C} 9$	$1.489(5)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.412(5)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.328(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.540(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.520(5)$
$\mathrm{C} 2 \mathrm{a}-\mathrm{C} 8$	$1.476(5)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.415(5)$
$\mathrm{C} 2 \mathrm{a}-\mathrm{N} 4$	$1.483(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.490(5)$
$\mathrm{C} 2 \mathrm{a}-\mathrm{O} 1-\mathrm{C} 2$	$105.2(3)$	$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 2 \mathrm{a}$	$125.5(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$107.1(3)$	$\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 2 \mathrm{a}$	$109.2(2)$
$\mathrm{O} 1-\mathrm{C} 2 \mathrm{a}-\mathrm{C} 8$	$111.2(3)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	$115.5(3)$
$\mathrm{O} 1-\mathrm{C} 2 \mathrm{a}-\mathrm{N} 4$	$103.0(3)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{S} 1$	$123.9(2)$
$\mathrm{C} 8-\mathrm{C} 2 \mathrm{a}-\mathrm{N} 4$	$112.1(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{S} 1$	$120.5(2)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{C} 9$	$115.6(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$119.0(3)$
N4-C3-C2	$100.1(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$115.3(3)$
$\mathrm{C} 9-\mathrm{C} 3-\mathrm{C} 2$	$113.0(3)$	$\mathrm{C} 2 \mathrm{a}-\mathrm{C} 8-\mathrm{C} 7$	$109.4(3)$
$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 3$	$124.0(3)$		

All H atoms were placed at idealized positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances constrained to 0.93 (aromatic CH), $0.97\left(\mathrm{CH}_{2}\right)$ or $0.98 \AA(\mathrm{CH})$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent $)$.

Data collection: XSCANS (Siemens, 1996); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

References

Amat, M., Llor, N., Escolano, C., Huguet, M., Pérez, M., Molins, E. \& Bosch, J. (2003). Tetrahedron Asymmetry, 14, 293-295.

Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Husson, H.-P. \& Royer, J. (1999). Chem. Soc. Rev. 28, 383-394.
Micouin, L., Varea, T., Riche, C., Chiaroni, A., Quirion, J.-C. \& Husson, H.-P. (1994). Tetrahedron Lett. 35, 2529-2532.

Roa, L.-F., Gnecco, D., Galindo, A., Juárez, J. \& Bernès, S. (2003). Anal. Sci. To be published.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL-Plus. Release 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

